Given $\left(X, J_{X}\right)$ and \sim on X $q: X \xrightarrow{\text { onto }} X / \sim$ or any Q

$$
J_{q}=\left\{V \subset X / \sim \text { or } Q: q^{-1}(V) \in J_{X}\right\}
$$

QT1 $q:\left(X, J_{x}\right) \rightarrow\left(X / \sim\right.$ or $\left.Q, J_{q}\right)$ is continuous Obvious, because if $V \in J_{q}$,
by definition, $q^{-1}(V) \in J_{x}$
QT J_{q} is the maximal topology on X / \sim or Q to make $q_{:}\left(X, J_{x}\right) \rightarrow X / \sim$ or Q cts. Suppose $q:\left(X, J_{X}\right) \longrightarrow\left(X / \sim, J^{\prime}\right)$ is continues Let $V \in J^{\prime}$, Then $q^{-1}(V) \in J_{x}$
By def, $V \in J_{q} . \therefore J^{\prime} \subset J_{q}$
QT 3 $f: X / \sim$ or $Q \longrightarrow Z$ is continuous
$\Leftrightarrow f \circ q=X \longrightarrow Z$ is continuous
" \Rightarrow " Trivial
" E" Easy. Basically $(f \circ q)^{-1}=q^{-1} \circ f^{-1}$

QT J_{q} is the minimal topology on X / \sim or Q to make QT3 true.
Exercise.

Disjoint Union
Put two copies of x together $\neq x \cup X$
Define $X \sqcup X=(X \times\{0\}) \cup(X \times\{1\})$
A useful example
Let $X=[-1,1] \Delta[-1,1]$
Identify $(x, 0)$ with $(x, 1)$ if $x \neq 0$ Picture $: \quad, \quad: \quad: \quad 0,1$

Qu. Is X / \sim Hausdorff?
Any nobs of $(0,0) \&(0,1)$ intersect!
Sphere
Given $\mathbb{D}^{2}=\{z \in \mathbb{C}:|z| \leqslant 1\} \subset \mathbb{R}^{2}$, standard

1. Identify $S^{\prime}=\{z \in \mathbb{C}:|z|=1\}$ to one point ie. $z \sim w$ if $|z|=|w|=1$
2. Identify $e^{i \theta}$ with $e^{-i \theta}$ for all θ

Attaching Space
Given $X, Y ; A \subset X ; f: A \longrightarrow Y$
Define $X U_{f} Y$ by $(X \sqcup Y) / \sim$ where $(a, 0)$ is identified with $(f(a), 1), a \in A$
Usually, we say:
Attach X to Y along A by f
(i) $X=\mathbb{D}^{2}=Y, A=S^{\prime}, f=$ id: $\mathbb{S}^{\prime} \longrightarrow \mathbb{S}^{\prime}$ $X U_{f} Y=S^{2}$, just like $N-S$ hemisphere
(ii)

$$
\begin{aligned}
& X=D^{2}=Y, A=S^{\prime}, f\left(e^{i \theta}\right)=e^{i(\theta+\alpha)} \\
& X U_{f} Y=\mathbb{S}^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& X=\mathbb{D}^{2}=Y, A=\mathbb{S}^{\prime} \\
& f\left(e^{i \theta}\right)=e^{2 i \theta}
\end{aligned}
$$

$X U_{f} Y$ is not a smface
(iv)

$$
\begin{aligned}
& X=\mathbb{D}^{2}=Y_{1} A=\mathbb{S}^{1} \\
& f\left(e^{i \theta}\right)=\frac{1}{2} e^{i \theta}
\end{aligned}
$$

Handle Body
(i) $X=S^{2} \backslash\left(D_{1} \cup D_{2}\right)$ where $D_{1}=D_{2}=D^{2}$

$$
Y=S^{1} \times[0,1]
$$

$A=\partial X=S_{1} \cup S_{2}$ where $S_{1}=S_{2}=S^{\prime}$
Note that $\partial T=S^{\prime} \times\{0\} \cup S^{\prime} \times\{1\}$
Let $f: A \rightarrow \partial Y$ be a homeomorphism
Then $X U_{f} Y=$ Torus
Usual say,

Attach a handle to a sphere
(ii) Attach two handles to a sphere

II
Attach a handle to a torus

Projective Plane $\mathbb{R P}^{2}$

1. Identify $(5,0) \sim(1-s, 1)$ and $(0, t) \sim(1,1-t)$ on $[0,1] \times[0,1]$
2. Iderify $e^{i \theta} \sim-e^{i \theta}$ on $D^{2}=\{|z| \leqslant 1\}$
3. Let $X=\mathbb{R}^{3} \backslash\{0\}$ and $x \sim y$ if $\exists \lambda \neq 0$ such that $x=\lambda y$ ie., $x, y, 0$ are on a straight line X / \sim becomes the space of lines in \mathbb{R}^{3}

4 Let $S^{2}=\left\{u \in \mathbb{R}^{3}=\|u\|=1\right\}$
Then $u,-u$ are called antipodal points In fact, $u, 0,-u$ form a diameter Fact. $S^{2} / \begin{gathered}\text { antipodal } \\ \text { points }\end{gathered}=\mathbb{R}^{3} \backslash\{0\} /$ st. lines
$[u] \longmapsto[u]$

$$
\left[\frac{x}{\|x\|}\right] \longleftrightarrow[x]
$$

Exercise. Show that it is a homeomorphism
5. Pictures

$$
[x] \longmapsto[\pi(x)]
$$

where $\pi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \longmapsto\left(x_{1}, x_{2}, 0\right)
$$

Exercise. Show that it is a homeomorphism 6. Let $m_{n}(\mathbb{R})=\{n \times n$ matrices over $\mathbb{R}\}$

$$
\begin{aligned}
m_{n}(\mathbb{R}) & \longrightarrow m_{n+1}(\mathbb{R}): A \longmapsto\left[\begin{array}{ccc}
1 & 0 \cdots & 0 \\
0 & A \\
0 & A
\end{array}\right] \\
O_{n}(\mathbb{R}) & =\{n \times n \text { orthogonal matrices }\} \\
& =\left\{Q \in m_{n}(\mathbb{R}): Q^{\top} Q=Q Q^{\top}=I\right\}
\end{aligned}
$$

Denote $\mathrm{O}_{3} / \mathrm{O}_{2}=\{$ left coset $\}$

$$
=\left\{A \cdot O_{2}: A \in O_{3}\right\}
$$

In $\mathrm{O}_{3} / \mathrm{O}_{2}, \mathrm{~A} \cdot \mathrm{O}_{2}=\mathrm{B} \cdot \mathrm{O}_{2}$ if $A^{-1} B \in O_{2}$
In other words, $A \sim B$ on O_{3} if $A^{-1} B \in O_{2}$

$$
\text { i.e. } \quad A^{-} B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & Q \\
0 & Q
\end{array}\right] \text { where } Q \in O_{2}
$$

Thus, $A^{-1} B\left(e_{1}\right)=e_{1}$ or $A\left(e_{1}\right)=B\left(e_{1}\right)$
Also, $\left.\quad A^{-1} B\right|_{0 \times \mathbb{R}^{2}}: 0 \times \mathbb{R}^{2} \longrightarrow 0 \times \mathbb{R}^{2}$
is an isometry (given by Q)
Anyway, $\mathrm{O}_{3} / \mathrm{O}_{2} \longrightarrow \mathrm{~S}^{2}$ by
$A \cdot \mathrm{O}_{2} \longmapsto A\left(e_{1}\right)$ is well-defined
Exercise. This is a homeomorphism
Now, denote $\pm O_{2}=\left\{\left[\begin{array}{ccc} \pm 1 & 0 & 0 \\ 0 & Q\end{array}\right]: Q \in O_{2}\right\}$
Then, only difference, if $A \sim B$
then $A\left(e_{1}\right)= \pm B\left(e_{1}\right)$
And $\mathrm{O}_{3} / \pm \mathrm{O}_{2} \longrightarrow \mathbb{R} P^{2}$

$$
A \cdot\left(\pm O_{2}\right) \longmapsto\left[\pm A\left(e_{1}\right)\right]
$$

Projective space $\mathbb{R P}^{n}=O_{n+1} / \pm O_{n}$
" n-dim spaces in \mathbb{R}^{n+1} "

